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Abstract

Climate change is expected to increase the frequency and intensity of droughts world-

wide, potentially amplifying extant problems of water overuse. This paper exploits

intra-country variation in water governance institutions, combined with an unexpected

14-year drought, to examine how institutions shape short- and long-run adaptation to

growing water scarcity in irrigated agriculture. I develop a dynamic model of ground-

water use with heterogeneous farmers and recurrent droughts to study the evolution

of commons dilemmas. The model predicts sharper and more regressive responses to

climate shocks in the presence of effective governance. I test these predictions using a

unique panel dataset covering more than 200,000 farms over nearly 20 years, supple-

mented with aquifer data and agricultural censuses. Crucially, some areas historically

introduced “water boards” to govern local water usage, while others did not. Empir-

ically, we find that irrigated farms governed by water boards are less vulnerable to

drought shocks in the short run. Counties with water boards reduced irrigated area

(particularly those of small, lower-income farmers) more than those without as the

drought worsened . Finally, we estimate slower aquifer depletion in areas with water

boards. Together, these results underscore the importance of strong institutions for

enabling sustainable adaptation in the long run, while highlighting the trade-offs they

entail in the short term.JEL codes: D23, D24, H41, O13, Q12, Q15, Q25.
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1 Introduction

A growing body of research estimates the potential impacts of climate change on global agri-

culture and the scope for adaptation (e.g. Burke and Emerick, 2016; Hultgren et al., 2022;

Kotz et al., 2024). However, there is limited understanding of how institutions mediate

climate shocks, especially over irrigated areas (Wuepper et al., 2023). Stronger institutions

may help enable more efficient trade-offs between short-term and long-term losses by over-

coming the Tragedy of the Commons (Ostrom, 1990, 2009). At the same time, because of

the stringent rules they impose, such institutions may introduce frictions to farmers’ ability

to adapt to climate shocks. This paper leverages intra-country variation in governance over

rivers and aquifers, combined with a climate-change-induced long-term drought, to analyze

the role of institutions in adapting to changing climate conditions and mitigating climate

change impacts.

I study the impact of an unexpected 14-year drought, affecting most agricultural areas

in Chile (Garreaud et al., 2017, 2024; Álamos et al., 2024). Irrigation is central for Chile’s

agriculture: the production of irrigated surfaces represents more than 60% of the coun-

try’s agricultural GDP and contributes more than 80% of its agricultural exports (Donoso,

2021). This long drought, called the 2008 Megadrought, has reduced precipitation and

river streamflows by more than 30%, with reductions in some years of nearly 90%. In this

context, there is pre-existing variation in water governance institutions: while all basins are

subject to some baseline governance provided by the state, some basins are subject to the

authority of Water Boards (Juntas de Vigilancia, see Garcia and Belmar, 2025). These local

self-governing boards control water sources during droughts, with the mandate to distribute

water to the users entitled to extract it.

My analysis provides a theoretical framework and an empirical analysis to understand

how institutions shape adaptations and welfare to this climate-change-induced drought. My

theory provides several testable predictions that illustrate the welfare losses resulting from

weak governance, and provides insights about the dynamics of climate adaptation. The the-

ory is complemented by my empirical analysis, which tests the short run (i.e. year to year)

and medium run (after 14 years) predictions, looking at a range of agricultural outcomes,
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including yields, water consumption, irrigation technologies, crop choice, and groundwater

reserves.

We provide a dynamic model of groundwater extraction that features heterogeneous

farmers and dynamic water supply, extending the classic work of Provencher and Burt

(1993). We confirm the straightforward intuition under more general conditions that it is

always optimal to constrain farmers from extracting groundwater, and also that the optimal

response to an individual drought is to authorize more groundwater extraction to offset the

losses from the drought. The most important prediction of the model regards the optimal

response to a change in the climate that leads to an increasing frequency of droughts: the

optimal response by a social planner is steeper than the response of decentralized farmers,

leading to a “dynamic tragedy of the commons”. We also show that effective governance–

the capacity to impose restrictions on groundwater usage upon farmers–may have regressive

results, as a central planner would constrain more less efficient farmers. The model’s final

prediction is that areas without governance will perform better than areas subject to gov-

ernance in the near future (or medium run), because they will extract more groundwater,

leaving them with less groundwater reserves in the long run.

Our empirical analysis tests this model by exploring three sets of outcomes related

to adaptation. In the first part, we estimate the sensitivity of farms to climate shocks in

the short run by estimating damage functions at the plot level. This analysis relies on a

panel database covering all land plots in agricultural land in the study region for 20 years,

with measures of water consumption and yield. We document reduced sensitivity of farms

subject to governance to reductions in river streamflow and precipitation. Using an elastic

net, we predict water usage and yield, based on a large set of weather and climate vari-

ables interacted with farm characteristics. Differences in this predicted variables will be

our measure of the intensity of drought for each plot. Our results show that farms subject

to governance present a flatter damage function than those without: a 1SD drought shock

reduces water consumption 40% more on farms without governance.

In the second part of our analysis, we show that the previous result do not extend to

medium run outcomes, by exploring the impacts of drought over cultivated surface after 13

years of drought. This part of the analysis combines using two rounds of the agricultural
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census, one before the drought’s onset and the second after 13 years of drought. We show

that areas with governance reduce their cultivated irrigated surface by approximately 20pp.

This change is fully explained by reductions in surface irrigated using traditional irrigation–

technology used by low productivity, small operations. There is no reduction in cultivated

surface using more capital intensive techniques: land irrigated with water-saving techniques,

such as micro-irrigation, suffered minor losses, while areas using macroirrigation–the most

capital- and water-intensive family of techniques– show no difference.

In the final part of my empirical analysis, we focus on groundwater extraction explic-

itly. We use a panel dataset that includes measures from water table monitoring stations

10 years before and after the onset of the drought. Our results show that areas without

governance deplete their aquifers faster, as captured by a 4 meter reduction in water table

depths relative to areas governed by water boards. We do not find any difference in the

issuance of extraction permits, suggesting that the driver is lack of oversight and enforce-

ment rather than permit issuance.

This paper provides both theory and evidence of how effective governance may reshape

farmers outcomes and adaptation to a changing climate. Although effective governance may

be welfare enhancing, addressing the Tragedy of The Commons in an intertemporal con-

text introduces short and medium run costs over the governed farmers to obtain long run

gains. Moreover, these costs are unevenly distributed among the population. All these are

challenges that any governing body will face, and therefore, our main contribution in this

paper is to raise this subject in a analytically streamlined framework, with comprehensive

evidence on the different trade-offs and impacts.

Literature. This is the first paper to explore how institutions mediate climate change im-

pacts using design-based econometrics in a large scale setting. The closest paper to ours is

Wuepper et al. (2023), which explores the impacts of nation-wide institutional reforms on

agricultural productivity and irrigation at national borders, considering long-run climate.

Our paper exploits an explicit climate change-related shock, and leverages intracountry

variation in one key institutional element: water governance in agricultural basins.

This paper contributes more generally to the literature on climate change impacts
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and adaptation. Agriculture has been the focus of some of the earliest studies on climate

change impacts (e.g. Schlenker et al., 2005; Deschênes and Greenstone, 2007; Schlenker and

Roberts, 2009; Dell et al., 2012; Burke and Emerick, 2016; Hultgren et al., 2022), but most

papers model irrigation merely as a mediator. This paper is the first to focus explicitly on

climate change impacts on irrigated areas at a micro level, and to show how institutions

may shape the outcomes of irrigated areas. This is also the first paper linking directly the

mitigation of climate change impacts to the depletion of natural capital–groundwater in

this case–, and therefore, providing evidence that the current adaptation strategies may not

be available in the future.

We also contribute to the development economics literature on impacts of irrigation

and irrigation behavior. Studying irrigation at scale is difficult: there is substitutability

across three different sources –precipitation, rivers and groundwater–, whose usage is rarely

measured. The literature so far has focused on source at the time, (e.g. for groundwater,

Carleton et al. (2023); Burlig et al. (2021) ; for surface water, Asher et al. (2023); Rafey

(2023)).1 In this paper, we explicitly include all three water sources, and show how shocks

over two of them (precipitation and rivers) create spillovers on the third (groundwater).

Finally, a growing literature studies groundwater extraction and its determinants

(Burlig et al., 2021; Ryan and Sudarshan, 2022; Blakeslee et al., 2020) . Most of the

microeconomic side of this literature has focused on India or California, where political

incentives, interdistrict conflict or institutional overlap create distortions on how water is

allocated. Our context, characterized by homogeneous legal institutions across the area

of study and clear definition of property rights, allows us to isolate the role of one key

institution, namely, the Water Boards.

2 Context

In this section, we present the context of our analysis. We first present the geography of

the area of study, and later introduce the institutional context.

1Precipitation has usually been modeled as a productivity shock rather than a substitute of irrigation(e.g.
Gollin and Udry, 2021).
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Area of Study. The study area spans latitudes −30 to −38 and the full longitudinal range

of Chile (central panel of Figure II). This region accounts for 87% of Chile’s population and

85% of its agricultural GDP. The climate is Mediterranean, with rainfall increasing along

a North-South gradient and a dry season extending from November to March. Rivers are

primarily fed by both rainfall and snowmelt.

Climate Change: the 2008 Megadrought. Although the study area has historically

faced frequent but short-lived droughts2, it has been under permanent drought conditions

since 2008, known as the Megadrought. This drought reduced streamflows by approximately

30% and precipitation by around 20%, with roughly 40% of the reduction attributed to

human-induced climate change (Garreaud et al., 2017, 2024; Álamos et al., 2024).

Institutional Context In 1981, Chile established a system of perpetual private property

rights over water (or water rights). This is the the only country in the world these rights

enjoy constitutional protection against expropriation, resulting in limited administrative

action by governments (Bauer, 2010; World Bank, 2011). These rights are fully transfer-

able, separated from land, and legally considered real estate. They are defined by the rate

of extraction (lt/s), source, intake location, monthly schedule, and ownership.

Public agencies have struggled to intervene effectively in water allocation during scarcity

due to legal restrictions on government action and lack of resources. This has created an

enforcement void during drought-induced reductions(Bauer, 2010; Tamayo and Carmona,

2019; World Bank, 2011, 2021). In response to droughts, agricultural users have established

Water Boards as representative bodies since 1908. The Water Code of 1981 granted these

boards legal authority to: 1) determine and enforce water allocations under extraordinary

circumstances (e.g., droughts), 2) adjudicate disputes among users, 3) track Water Rights

claims, and 4) provide common goods such as legal assistance and shared infrastructure,

while defining their own funding sources (Biblioteca del Congreso Nacional, 1981).

Boards are established by user agreements or lawsuits, independently across basins,

and are self-governed by water rights owners, with votes proportional to ownership. Garcia

2At least every 7 years, lasting less than 22 months under the influence of the ENSO.
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and Belmar (2025) shows large impacts of Water Boards on the long-run efficiency of water

allocation, driven by redistribution across locations and individual adaptations. Figure II

presents their jurisdictions.

3 Conceptual Framework

Lets consider a model of decentralized and centralized groundwater usage, along the lines of

Provencher and Burt (1993) but incorporating heterogeneity across farmers and uncertainty

in a dynamic context. Consider a set of M farmers indexed by i that share access to an

acquifer, that stores a volume of water equal to xt ≥ 0 in period t = 0....∞.

Each farmer sells in a perfectly competitive market with a perfectly elastic demand

supply an homogeneous agricultural good with price normalized to 1, using only total water

input wt as an input, according to a production function fi(wt) and a pumping cost function

ci(wt, xt) such that their profits πit ≡ aifit − cit = aiπ(wit, xt) are increasingly monotone

and strictly concave in water input, and increasing in the remaining groundwater stock.

The farmer discounts future profits using a constant discount factor β.

The weather is represented by a state s ∈ {N,D} (for Normal and Drought) that

characterizes the weather of each year following an IID process. If st = D (which hap-

pens with probability p ∈ [0, 1]), the water input for farmer i is equal to the amount of

groundwater pumped by them, wit. If st = N (with probability (1 − p) ∈ [0, 1]), then the

total water input is equal to wit + µ. The state is known at the beggining of each period.

The acquifer does not recharge, so the law of motion of groundwater volume available is

xt+1 = xt −
∑M

i=1wit.

Finally, a central planner can impose a restriction to groundwater extraction w̄it(s).

The analysis will focus on the conditions under which it is optimal for the planner to re-

strict access to groundwater, or in other words, to make the restriction associated to w̄it(s)

binding to farmers.

The Farmer’s Problem. We can formulate the problem of the farmer as a recursive op-
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timization problem. The optimal groundwater extraction policy for farmer i satisfies the

following Bellman equation:

vi(x, s; w̄i) =max
wi

{
πi(wi + µ1[s=N ], x) + βEs

[
vi(x

′, s′)
]}

Subject to x′ =x−
∑
j ̸=i

wj − wi

wi ≥0

w̄i(s) ≥wi

(1)

where we denote by δi, γi and λi the Lagrange multipliers of each restriction for farmer i,

namely, groundwater availability, postitivity and permit restrictions.

The first order condition for this farmer will be equal to

∂vi(x, s; w̄i)

∂wi
= 0 ⇐⇒

∂πi(wi + µ1[s=N ], x)

∂wi
= β

∂Es [vi(x
′, s′)]

∂x′
+ δi + γi + λi

Let’s consider a period where neither the groundwater availability nor the positivity restric-

tion bind.
∂πi(wi + µ1[s=N ], x)

∂wi
= β

∂Es [vi(x
′, s′)]

∂x′
+ λi (2)

If the permit restriction does not bind, then
∂πi(wi+µ1[s=N ],x)

∂wi
= β ∂Es[vi(x

′,s′)]
∂x′ , i.e. the farmer

will extract groundwater up to the point where the marginal benefit of groundwater is equal

to the private user cost, namely, the expected discounted marginal value of groundwater. If

the permit restriction binds, instead, wi = w̄i and λi =
∂πi(w̄i+µ1[s=N ],x)

∂wi
− β ∂Es[vi(x

′,s′)]
∂x′ > 0.

It is worth noting that under the stated assumptions, the value function is continuous,

monotone, differentiable, and strictly concave in the state x (Acemoglu, 2008).

The Planner’s Problem. The planner maximizes social welfare, by allocating permits to

groundwater extraction. Formally, the planner’s problem is to maximize the value of all

farmers,
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W (x, s) = max
{w̄i}Mi=1

M∑
i=1

vi(x, s; w̄i)

Subject to x′ =x−
M∑
i=1

wj(w̄j))

x′ ≥ 0

(3)

Note that we can rearrange the target function:

W (x, s) = max
{w̄i}Mi=1

M∑
i=1

vi(x, s; w̄i) = max
{w̄i}Mi=1

M∑
i=1

{
πi
(
wi(w̄i) + µ1[s=N ], x

)
+ β

M∑
i=1

Es′vi(x
′, s′; w̄i)

}

= max
{w̄i}Mi=1

M∑
i=1

πi
(
wi(w̄i) + µ1[s=N ], x

)
+ βEs′W (x′, s′)

(4)

So the planners’ problem is also recursive. Let δ be the Lagrange multiplier of the non-

negativity of future water stock condition. The first order condition of the planner’s problem

for the permit to farmer’s i groundwater extraction is

∂πi(wi + µ1[s=N ], x)

∂wi

∂wi

∂w̄i
=β

∂Es [W (x′, s′)]

∂x′
+ δ

=β
∑
i

∂Es [vi(x
′, s′)]

∂x′
+ δ

(5)

and so, for periods when the future water stock condition is not binding, then

∂πi(wi + µ1[s=N ], x)

∂wi

∂wi

∂w̄i
= β

∑
i

∂Es [vi(x
′, s′)]

∂x′
(6)

First, note that if the permit restriction is binding for farmer i, then ∂wi
∂w̄i

= 1; otherwise, it

is equal to 0. If it is binding, then, the LHS of both equations 5 and 2 are the same. This
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implies that, if the permit restriction is binding for farmer i, it must be the case that

β
∂Es [vi(x

′, s′)]

∂x′
+ λi =β

M∑
j=1

∂Es [vj(x
′, s′)]

∂x′

⇐⇒ λi =β
∑
j ̸=i

∂Es [vj(x
′, s′)]

∂x′

(7)

Given the stated properties of the farmers’ profit functions, all farmers’ value functions must

be strictly increasing in x, and so the right hand side must be strictly positive. Therefore, it

is optimal for the planner to impose a positive shadow value of permits, i.e. restrict farmers

water usage. Moreover, the optimal permit restricts water extraction by farmer i according

to the externalities created over the other farmers3. This means that both individual and

aggregate groundwater usage is more intense without planners’ regulation through permits.

Condition 5 implicitly shows how the optimal allocation of permits responds to the

state: given that the social user cost (RHS of equation 5) does not depend on the current

state s, it must be the case that:

∂πi(w̄i(s = N) + µ, x)

∂wi
=
∂πi(w̄i(s = D), x)

∂wi

⇐⇒ w̄i(s = D)− w̄i(s = N) =µ > 0

(8)

Therefore, the optimal policy for the planner is to allow more groundwater extraction during

droughts than in normal times, compensating the water losses caused by the drought.4 It is

also easy to show that it is socially optimal to allocate larger allowances to more productive

farmers.

The response to an increase in droughts frequency. The previous framework allows

to explore how the optimal allocation of groundwater changes as a response to an increase

in the frequency of droughts, operationalized as an increase in p = Pr(s = D). Applying

the Implicit Function Theorem to condition 65:

3This is a result of the Planners’ FOC being satisfied with equality. Therefore, the previous result is true
as long as the marginal social value of groundwater is positive, or in other words, that groundwater is finite.

4This is true as long as the restriction of future water availability is not binding. An analysis of this case
requires further assumptions.

5Here we focus on periods where groundwater availability positivity restriction does not bind, because 1)
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∂w̄i

∂p
=

(
∂2π(w̄i + µ1[s=N ], x)

∂w2
i

)−1

β

[
∂W (x′, s′ = D)

∂x′
− ∂W (x′, s′ = N)

∂x′

]

=

(
∂2π(w̄i + µ1[s=N ], x)

∂w2
i

)−1

β
∑
j

[
∂vj(x

′, D)

∂x′
− ∂vj(x

′, N)

∂x′

] (9)

Given the strict concavity of the individual profit functions on water usage, the first

term in the RHS of equation 9 is negative. To analyze the sign of the second term in the

RHS, we need to focus on the marginal value of groundwater as a function of the weather

state when groundwater is actually scarce. In Appendix B we analyze the value function

and the marginal value of groundwater for different levels of the acquifer (x = 0, and x

away 0, with the groundwater availability restriction binding or not), and we prove that

for all farmers i 1) ∂vi(x
′,D)

∂x′ − ∂vi(x
′,N)

∂x′ > 0 and 2) vi(0, N) > vi(0, D). We also prove that

∂W (x′,D)
∂x′ − ∂W (x′,N)

∂x′ > 0 and W (0, N) > W (0, D), and so, the optimal response by the

central planner is to restrict more groundwater extraction when facing an increase in the

frequency of droughts.

We can compare the Planner’s response to the one by individual farmers for whom the

planner restriction is not binding:

∂w∗
i

∂p
=

(
∂2π(w∗

i + µ1[s=N ], x)

∂w2
i

)−1

β

[
∂vi(x

′, D)

∂x′
− ∂vi(x

′, N)

∂x′

]
(10)

Equation 10 can be interpreted as individual farmers will optimally adjust their extrac-

tion schedule internalizing just the change in the private value of groundwater. Therefore,

even though individual farmers may reduce their groundwater extraction to preserve the

private value of the acquifer, their response falls short with respect to the one by the planner,

once the acquifer is depleted, there is no need to ration anymore, and 2) given that there is no recharge of
the acquifer, the analysis of this borderline case is actually relevant for a minimum number of periods.
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by6

∂w̄i

∂p
− ∂w∗

i

∂p
=

(
∂2π

∂w2
i

)−1

β
∑
j ̸=i

[
∂vj(x

′, D)

∂x′
− ∂vj(x

′, N)

∂x′

]
< 0 (11)

Distributive consequences of the Planner’s adaptation

To explore the distribute consequences of Planner’s adaptation, lets explore how different

farmers’ optimal allowance would change as a function of a marginal change in p. Consider

an arbitrary pair of farmers i, j such that i is more productive, i.e. ai > aj . From the FOC,

we know that in the optimal allocation the planner equates the marginal benefit of water

of all farmers, and so, applying the Implicit Function Theorem:

∂w̄i

∂p
∂w̄j

∂p

=

∂2πj(w̄j + µ1[s=N ], x)

∂w2
j

∂2πi(w̄i + µ1[s=N ], x)

∂w2
i

(12)

According to equation 12, which farmer will face a stronger reduction will depend on the

third derivative of the profit function. Nothing in our current assumptions helps to identify

the sign of this object. According to Ryan and Sudarshan (2022) and Burlig et al. (2021),

the cost function is linear in the volume pumped, based on a physical relationship. The

third derivative of this function is zero, and so, π
′′′
i = f

′′′
i . Furthermore, if the productivity

term is Hicks-neutral, f
′′′
i = aif

′′′
. Under these assumptions, equation 12 is equal to

∂w̄i
∂p

∂w̄j

∂p

=
aj

∂2f(w̄j+µ1[s=N ])

∂w2
j

ai
∂2f(w̄i+µ1[s=N ])

∂w2
i

(13)

As the differences in the second derivative of the production function are negligible relative

to the first order differences in productivity, the optimal response by a social planner would

6To compare explicitly the private and planner’s responses, it is necesary to compare the differences in
the inverse of the second derivative of the profit function with respect to the water input (first term in both
RHS). This involves the third derivative of the profit and cost functions, so here, we assume that these
differences are of a second order magnitude compared to the second term, i.e. differences in the marginal
value of groundwater.
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reduce more the water allowance of the less productive farmers. 7

If we want to compare how the distributive responses differ between the centralized

versus the decentralized allocation, we may reanalize equation 11, as it represents the “adap-

tation gap” between the decentralized allocation versus the socially optimal planner’s re-

sponse.

∂w̄i

∂p
− ∂w∗

i

∂p

∂w̄j

∂p
−

∂w∗
j

∂p

=

(
∂2π

∂w2
i

)−1

β

{[
∂W (x′, D)

∂x′
− ∂W (x′, N)

∂x′

]
−
[
∂vi(x

′, D)

∂x′
− ∂vi(x

′, N)

∂x′

]}
(
∂2π

∂w2
j

)−1

β

{[
∂W (x′, D)

∂x′
− ∂W (x′, N)

∂x′

]
−
[
∂vj(x

′, D)

∂x′
− ∂vj(x

′, N)

∂x′

]}
(15)

We can see that the gap is proportional to the difference in marginal values of water

across states for all the other farmers. If each individual difference is increasing in produc-

tivity, then, it means that the gap is larger for the least productive farmers.

Testable implications regarding Adaptation. The previous model compares the adap-

tation of the allocation of groundwater by a social planner to a deregulated allocation. The

main testable implications related to adaptation to more frequent droughts are that 1) in

response to a similar increase in precipitation, a social planner will reduce more water ex-

traction than what unregulated farmers would do, and 2) the gap between the centralized

and the decentralized allocations is larger among the less productive farmers.

One last insight from the model comes from reanalizing the Bellman Equation of the

social planner (equation 3): we showed that social welfare–measured as the sum of the

individual value functions– is maximized by the contraints established by the planner to all

farmers, so the sum of individual values under regulation is larger than under deregulation.

7If we consider a quadratic cost function c(wi, x) =
cw2

i
2×x

, the third derivative is also zero. Under these
assumptions, we can develop further equation 12 to obtain:

∂w̄i
∂p

∂w̄j

∂p

=
aj

∂2f(w̄j+µ1[s=N])

∂w2
j

− c
x

ai
∂2f(w̄i+µ1[s=N])

∂w2
i

− c
x

(14)

and so the conclusion that the optimal response by a social planner would reduce more the water allowance
of the less productive farmers remains unchanged.
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At the same time, those contraints will reduce the current per-period profits. These two

facts can be reconciled if the per-period profits are larger under deregulation in early periods

up to a point where they are equalized, and after, the per-period profits under deregulation

are lower than under regulation. This means that there is an additional testable implica-

tion: we should observe more losses under regulation than deregulation in the medium run.

In the next sessions, we will estimate the impacts of droughts in the short and medium

run. Our model simplifies the role of governing institutions in the short run. Garcia and

Belmar (2025) document how Water Boards historically redistributed water to enforce Wa-

ter Rights, providing a more stable distribution of surface water. This would correspond to

a reduction in uncertainty over µ, which is this model has been considered a fixed parameter.

With this in mind, we will test our set of testable implications, namely:

� In response to a similar increase in precipitation, a social planner will reduce more

water extraction than what unregulated farmers would do.

� The gap between the centralized and the decentralized allocations is larger among the

less productive farmers.

� There are more losses under regulation than under deregulation in the medium run.

4 Data

This project relies on three main databases. The first one is a unique panel database track-

ing more than 200,000 farms in irrigated areas over nearly 20 years, covering 85% of its

agricultural production. The second corresponds to two rounds of the national agricultural

census, covering the totality of agricultural operations, and providing information at the

farm level on crop choice, production and technology. Finally, the third database is a panel

of groundwater monitoring stations.

Climate and Hydrology Data. The Center for Climate and Resilience Research (CR2)

created daily climatic estimates for the entire Chilean territory at a 0.05× 0.05 degree res-

olution, by calibrating ECMWF ERA-5 with input from local climatic monitoring stations
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(Alvarez-Garreton et al., 2018). These estimates include precipitation, , and minimum and

maximum temperatures. We aggregate these climatic estimates at the plot, county or the

drainage basin level, according to the analysis on which the data is being used.

The DGA (Water Directorate, the technical government office in charge of water issues)

publishes data on river streamflow and water rights reclamations for the whole country. CR2

has further processed these datasets to combined them with the climatic products discussed

above.

The DGA also collects information on groundwater levels using in-situ monitoring sta-

tions. Venegas-Quiñones et al. (2024) further processed this data to harmonize information

across stations and over time.

Land plot limits and characteristics. SII (the Chilean Tax Authority) maintains for

tax purposes a Land Cadaster, with detailed information on each plot of land in the country.

CIREN geocoded the Land Cadaster for 2013. CIREN also provides information on soil

characteristics. Using elevation rasters from Hydrosheds, we calculated elevation, slope and

orientation for each land plot. We obtained the canal locations and data from the DGA

and CIEDESS, a local research center focused on natural resources, allowing to measure

access to canals and basin location.

Satellite information on Evapotranspiration and Greenness. EEFlux is a platform

that provides Evapotranspiration estimates using the METRIC method (Allen et al., 2015)

using as input images from Landsat 7, 8, 9 and Sentinel 1 and 2. This method recovers

Evapotranspiration from an Energy Balance condition that equates the measured sun radi-

ation on the surface to the calculated surface reflectance, estimated soil heat absorption and

Evapotranspiration (which is recovered as a residual)(Allen et al., 2015). We use images cap-

tured since the year 2000 using as input Landsat-7 images, with a resolution of 30m×30m, a

resolution fine enough to allow us to perform farm-level analysis. We also use EVI estimates

based on Landsat 7 images from the USGS, and so they also have a resolution of 30m×30m.

Farm Decisions and Technology: We use data from the 2007 and 2021 Agricultural
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Censuses, collected by the National Statistic Bureau (INE, the official statistical office of

Chile). These Census include operation-level information on land use and extension, crop

choice, capital and employment decisions, managerial characteristics and legal organization.

Importantly, includes information on land use per crop, and self-reported information on

water scarcity and use of irrigation and the sources and legal status of irrigation water,

together with affiliation to agricultural organizations (including specifically Canal Associa-

tions).

5 Short Run Impacts of Climate Change

In the previous section, we introduced a model that addresses the intertemporal trade-offs

implicit in managing groundwater. But we provided limited discussion of the role of surface

water (represented by the parameter µ). In practice, surface water display a more complex

behavior, and more importantly, the stability of surface water supply depends directly on

the institutions in place (Garcia and Belmar, 2025). To properly test our model, we need

to take into account the short term impacts of drought, and how they may differ depending

on the institutions in place.

In this section, we estimate the short impacts of the Megadrought, by measuring

sensitivity of farms outcomes to the yearly weather. In the first part of this section, we

show that these findings extend in a panel setting: yields and water consumption are less

sensitive to yearly variation in water availability, conditional on local time trends. To

address multicolinearity and increase power, I use a LASSO model to create drought indexes

as a function of each plot’s characteristics, that incorporate all the simultaneous shocks to

agriculture associated to droughts in a scalar measure. I finally present estimates of damage

functions of the Megadrought.
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5.1 Panel Estimates of Irrigation and Yield Short Run Sensitivity to

Drought

We estimate panel regressions of the form

yigt =β1wigt + β21 [Has WB]×wigt + γxigt + αi + δgt + εigt (16)

where yigt is some agricultural outcome for farm i within spatial grid cell bin b in year t.

w is a vector of environmental variables that represent sources of water supply; in partic-

ular, we will focus on river streamflow and annual precipitation. xigt is a vector of plot

level time-varying controls related to temperature and Summer precipitation8. Finally, αi

denotes plot level fixed effects, and δgt is a year-by-spatial grid cell bin fixed effect. We will

consider grid cells of 1◦ × 1◦ and 0.5◦ × 0.5◦. We estimate this equation for a sample of

farms that are within the jurisdiction of water boards created before year 2000, or farms

outside any water board.

Results. Table VII present the results of estimating equation 19 for two measures of water

supply: river streamflow (columns 1 and 2) and annual precipitation (columns 3 and 4). In

columns 5 and 6 we include both sources. Columns 1, 3 and 5 include year ×1◦× 1◦-degree

cell fixed effects, while columns 2, 4 and 6 include Year ×0.5◦×0.5◦-degree cell fixed effects.

We present results for two key two agricultural outcomes: in Panel A, our outcome variable

is irrigation (measured as the average evapotranspiration over the Summer), and in Panel

B, is yield (measured using the peak of EVI index over the season).

Our results show that water boards mediate climatic shocks by attenuating their im-

pact on outcomes, but given the correlation between annual precipitation and streamflow,

the results are sensitive to the inclusion of the other water supply variable and the spatial

resolution of the time trends. Moreover, according to our results, climatic shocks over evap-

otranspiration are mediated by water boards through the coefficient of river streamflows,

which seems contradictory with the results of climatic shocks over yields being mediated

8Summer precipitation is marginal in the area of study, and it does not have a systematic impact on
irrigation availability, which depends mostly on Winter and Spring solid and liquid precipitation.
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through the coefficient on precipitation. Therefore, while Water Boards seem to mitigate

high-frequency (i.e. seasonal) shocks, it is hard to quantify its role, given the sensitivity of

the estimates to the specification, the multicollinearity among the different climatic vari-

ables. In the next subsection, we will address this by using a different approach: using

machine learning, to measure plot-specifics drought indexes, such that we can summarize

all the simultaneous climatic shocks into one scalar index.

5.2 Machine Learning for Prediction of Irrigation and Yield

In this section, we address the multiplicity of correlated shocks by creating a scalar index

using LASSO. The objective here is to estimate damage functions, and to show that the

damage function for areas with water boards is less steep, i.e. less sensitive to drought

shocks. The estimation of a damage function requires modelling the source of damage, and

measuring outcomes. Droughts in Chile are accompanied by higher temperatures, making

them a compound shock: a drought will imply simultaneously a reduction of water input,

an increase in temperature stress, and a reduction in the ability to protect crops against

temperature shocks with irrigation (Proctor et al., 2022). On top of this multicollinearity

issue, there are multiple variables that may be relevant in some areas within our area of

study, but not in others (for example, precipitation in the winter and summer). All these

issues compound with EVI having a high noise-to-signal ratio, introducing challenges in the

context of panel data with high-resolution fixed effects Hogan and Schlenker (2024).

To reduce the dimensionality of the Megadrought shock, I adapt the procedure by

Hultgren et al. (2022) to my setting; the procedure is summarized in Figure XI. Given the

high resolution of my analysis (at the plot level), I estimate directly LASSO models for ETa

during summer and EVI, including as potential predictors interactions between climatic

variables (precipitation–linear and squared; days over 25, 29, 31, and 35°C, and interactions

with precipitation; mean precipitation between 2000 and 2005, during the whole year and

summer; and streamflow data) and plot characteristics (0.5× 0.5-degree cell, plot size, and

soil quality indicators; elevation, slope and orientation; distance to the river mouth through

the river network and distance to the closest irrigation canal). I estimate these models using

data from years between 2000 and 2005, using cross-validation over 5-folds and clustering
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across folds by basin × year groups. I include the results of this procedure for each outcome

(Evapotranspiration and EVI peak) in tables XIX and XX, respectively.

My measure of Megadrought shock is the difference in predicted evapotranspiration

and yield between each year’s prediction and the average prediction between year 2000

and 2007, which we consider to represent baseline climatic conditions. To illustrate the

relevance of this measure, figure IV presents the average predicted evapotranspiration for

our full sample, before the Megadrought (i.e. 2010) and after, in deviations from the pre-

Megadrought average. Before 2008, the predicted amount of evapotranspiration oscilates

around the period average, with variation coming from short-lived droughts (such as in 2004

and 2007; see figure III ). In 2018, instead, the climate shock predicts substantial reductions

in evapotranspiration: in average, farms were expected to reduce their water consumption

by 0.39mm, with the 25th percentile of shock implying a reduction of 0.52mm. The mean

and median reduction in expected Evapotranspiration after 2010 is 0.29.

In figure V I present the average predicted evapotranspiration over time, separately

for farms within and outside Water Boards jurisdictions. Farms outside their jurisdiction

have a higher expected evapotranspiration both before and after the onset of the drought,

but more importantly, they seem to face in average a milder shock in the long run.

Estimation of Damage Function. The estimation of a damage function in this context

implies estimating an equation of the form

yigt = β1
(
ŷit − ¯̂yi2000−2005

)
+ αi + δgt + εigt

where yigt denotes evapotranspiration or yield for farm i in grid-cell g and year t. ŷit =

f(xi,wgt) in turn, represents the predicted outcome for farm i in year t as a function of

weather shocks wgt and farm characteristics xi. ¯̂yi2000−2005 = 1
5

∑
t∈[2000,2005] f(xi,wgt)

is the average prediction for that farm in the Training sample period (a subset of the pre

Megadrought period). αi represent plot FE and δgt denotes grid-cell×year level fixed effects

(in our specifications, we consider 1×1 and 0.5×0.5 degree cells). The coefficient of interest

is β: it shows the correlation between the outcome and the estimated shock. Specifically, a

18



positive β implies a that a negative shock will impact negatively our outcomes.

As our interest is on the role of Water Boards on mediating drought impacts, our main

equation is

yigt =γ1 [Has WB] + β1
(
ŷit − ¯̂yi2000−2005

)
+ β21 [Has WB]×

(
ŷit − ¯̂yi2000−2005

)
+ αi + δgt + εigt

(17)

We expect β2 to be negative, such that β1 + β2 < β1. This means that a given negative

shock will have a softer impacts over governed farms relative to ungoverned farms.9. We

estimate equation 19 using FGLS to gain power, and consider standard errors clustered by

2nd level basin × year, following Hogan and Schlenker (2024).

Main Results. Table I present our estimates of the damage function for water consump-

tion. Column 1 includes common year effects, column 2 includes 1◦ × 1◦ degree cell × year

fixed effects (this is my preferred specification), while column 3 considers 0.5 × 0.5 degree

cell × year fixed effects. Our results consistently show that the presence of Water Boards

mitigates shocks over ETa. In my preferred specification, the presence of water boards

reduces the sensitivity to climatic shocks by approximately 45%.

In Table II we replicate this exercise for Peak EVI, our proxy for yields. The results

are qualitatively similar, with a negative estimate of the interaction between the shocks

and the Water Boards dummy. The high signal-to-noise ratio affects the estimation of the

main effect of the shock once we incorporate finer spatial time trends. In Appendix XV,

I present alternative models10, estimated using weights based on the performance of the

Machine Learning model in the training sample to address errors related to the model; the

results are consistents with Boards mitigating the impacts of the schocks over both Evapo-

transpiration and Yield.

9We do not focus here on the main impact of Water Boards presence (γ), as their long term impacts have
already been explored in Garcia and Belmar (2025)

10Using a LASSO and an Elastic Net prediction models.
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Asymmetric response to droughts. Amore flexible model allows to estimate differential

effects, depending if the shock is negative or positive:

yigt =β1
(
ŷit − ¯̂yi2005−2008

)
+ β21

(
ŷit > ¯̂yi2005−2008

)
+ β31

(
ŷit > ¯̂yi2005−2008

)
×
(
ŷit − ¯̂yi2005−2008

)
+ αi + δgt + εigt

where β1 (β1+β3 ) is the marginal effect of the shock on the outcome for negative (positive)

shocks.

Our hypothesis is that these coefficients are different for areas according to governance.

Therefore, we want to estimate heterogeneous effects of the estimated shock as a function

of the presence or absence of Water Boards. Our equation of interest is

yigt =β1
(
ŷit − ¯̂yi2005−2008

)
+ β21

(
ŷit > ¯̂yi2005−2008

)
+ β31

(
ŷit > ¯̂yi2005−2008

)
×
(
ŷit − ¯̂yi2005−2008

)
+ γ01 (Has WB) + γ11 (Has WB)×

(
ŷit − ¯̂yi2005−2008

)
+ γ21 (Has WB)×

(
ŷit > ¯̂yi2005−2008

)
+ γ31 (Has WB)× 1

(
ŷit > ¯̂yi2005−2008

)
×
(
ŷit − ¯̂yi2005−2008

)
+ αi + δgt + εigt

(18)

Our main hypothesis, then, is that γ1 < 0 i.e. the damage function for areas subject

to Water Boards authority are less sensitive to drought shocks.

One caveat on estimating this second model is that our sample skews heavily towards

negative shocks (as figure IV shows), leaving little useful variation to estimate parameters

for positive shocks. This is particularly relevant when including high-resolution time trends

(Hogan and Schlenker, 2024). These concerns apply more to our yield estimates, which cor-

respond to the peak of EVI over the agricultural season. This is a coarse measure of yield,

as opposed to our measure of water consumption (Evapotranspiration), which relies on a

specialized algorithm, based on a physical energy balance equation. I present the results of

estimating equation 18 for Evapotranspiration in Table III. In our preferred specification

(column 2), the presence of a Water Board reduces the sentivity to a negative shock by more

than 60%. Figure VI illustrates the implied function, showing how water boards mitigating
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effect is driven by negative shocks, as expected.

Heterogeneous effects by land value. In this subsection, I present the results of allowing

for different effects depending on the value of each plot of land. This exercise will provide

insights on the distributional effects of governance and property rights enforcement in the

context of tradable water rights. The mitigation of shocks in irrigated areas is possible

due to the access to water for irrigation (Proctor et al., 2022; Cisse et al., 2025). If poorer

farmers sell their water rights, we expect them to have more sensitivity against shocks

relative to richer farmers in the same area.11 To proxy for the value of land, I use the tax

authority valuation of all plots of land in the country, which is a function of different plot

characteristics that correlate with land productivity and market valuation.

I present the results of this exercise in table V, where I allow for different sensitivities

and water boards mediation effects depending if the farms are below the 25th percentile

of land value, above the 75th, or between these values. The results show that while for

farms above the 25th percentile of land value, the mitigating effect we still see a reduction

of approximately 50% in sensitivity to shocks (51% for farms above the 75th percentile and

47 for those between the 25th and 75th), this effect is only of 25% for the poorest farms.

6 Medium Run Outcomes

This section addresses the medium-run impacts of the drought, focusing on cumulative

agricultural outcomes and how they differ across counties with and without Water Boards.

While the previous section showed that Water Boards mitigate short-term shocks, this

section explores whether those benefits are sustained over time or come at the cost of slower

recovery. We begin by describing the evolution of agricultural outcomes using census data,

and then estimate difference-in-differences specifications to isolate the effect of governance

on irrigated area and perennial crops.

11More importantly, increased property rights enforcement would increase disproportionatelly the sensi-
tivity against shocks for poor farmers without water rights, relative to similarly poor farmers without rights
but subject to more lax enforcement. Unfortunately I do not spatially precise data on who owns water rights
to test explicitly this.
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6.1 Summary Statistics

We use county-level data from the 2007 and 2021 Agricultural Censuses, covering culti-

vated surface, irrigated surface (disaggregated by irrigation technology), and planted area

of fruit trees. Table VIII reports summary statistics for these variables, showing means and

standard deviations by Water Board status. Counties with Water Boards had, on average,

larger irrigated and cultivated areas in 2007, particularly in drip and surface irrigation sys-

tems. Between 2007 and 2021, irrigated area increased in both groups, though the average

increase was smaller in counties with Water Boards. The data also show that counties

without Water Boards expanded their use of surface and mixed irrigation more intensively.

For perennial crops, the surface planted with fruit trees increased in both groups, though

again the expansion appears larger in counties without governance institutions.

To complement these administrative data, Table ?? presents plot-level summary statis-

tics. These include average farm size, share of area irrigated, and share of area planted with

fruits, vegetables, or annual crops. The table shows that plots in counties without Water

Boards tend to have a higher proportion of area under fruit production and larger increases

in total irrigated area.

6.2 Empirical Strategy

To quantify medium-run impacts, we estimate the following difference-in-differences speci-

fication:

ycr2021 − ycr2007 = γ1 [Has WBc] + β (xc2021 − xc2007) + δr + εc (19)

where ycrt denotes the outcome of interest in county c and administrative region r at

time t, xct is a vector of climate controls (including average precipitation by season and

number of extreme temperature days over the five years prior), and δr are region fixed

effects. The coefficient γ captures the differential medium-run effect of Water Boards on

changes in agricultural outcomes over the 2007–2021 period.

We estimate equation 19 for the sample of counties that either 1) had Water Boards
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established before 2007 and 2) those which do not have any until today. There are only

two counties that had boards established since 2007 (in fact, after 2010), and they differ

substantially from those established before. The results do not change substantially, but the

interpretation does: γ represents the differential time trend for counties that have Water

Boards presence over this time period.

Table XIII presents the estimated γ coefficients for irrigated surface. Column 1 reports

results for total irrigated area, while columns 2–5 show estimates for surface, drip, sprin-

kler, and mixed irrigation systems, respectively. Counties with Water Boards experienced

significantly smaller increases in total irrigated surface compared to counties without them.

The largest differences are observed in surface and mixed systems, where the coefficients

are negative and statistically significant. For drip and sprinkler systems, the estimated

differences are smaller and not consistently significant, suggesting that the constraint on

expansion may be more pronounced in more capital-intensive irrigation techniques, more

prevalent among high-productivity operations as opposed to traditional, smaller farmers.

Table XIV shows analogous results for the change in fruit tree planted surface between

2007 and 2021. These results reflect longer-term investment responses, since fruit trees

require multi-year planning and consistent water availability. The presence of a Water

Board is associated with significantly smaller increases in fruit tree area. The estimates are

statistically significant in several specifications, indicating that governance may have limited

expansion into perennial, water-intensive crops during or following the drought period.

6.3 Medium run impacts over acquifers

In the previous sections, we show that while in the short run, Water Boards mitigate drought

shocks, in the medium run counties with Water Board presence had suffered larger losses.

To conciliate these facts, we will show in this section that this seemingly paradoxical results

can be explained by the weaker regguation of groundwater usage in the absence of Water

Boards.

We will use the dataset presented by Venegas-Quiñones et al (2024), based on the

monitoring stations data provided by the DGA. Figure VII presents the key data for this

exercise: it presents the evolution of acquifer levels (figure VIIa) and volume of approved
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groundwater extractions (figure VIIb). Figure VIIa presents the average water table depth

over time for monitoring stations within and outside the jurisdictions of Water Boards.

Before the Megadrought, although the water table depth for areas without Water Boards

are lower than for areas subject to the jurisdiction of a Water Board, both groups were

reducing their levels at a similar rate. However, after the onset of the Megadrought, areas

without governance are depleting their acquifers faster, as predicted by the model. Figure

VIIb presents the evolution of the total volume of groundwater rights created over the same

period. This figure suggests that the explanation for the divergence is the lack of oversight

and governance: if anything, areas with Water Boards have a larger volume of authorized

groundwater extractions, so it cannot explain the faster rate of extraction in areas without

Water Boards.

To formally test this hypothesis, we estimate a Difference-in-Differences model of water

table depth. The equation is

yit =
10∑

k=−10

βk[k = t− 2010] + γxit + αi + δt + εit (20)

where yit is the water table depth of monitoring station i in year t, δxit corresponds to mea-

sures of precipitation, αi is a monitoring station fixed effect and δt is a year fixed effect. We

estimate equation 20 using the Event Study DID imputation estimator by Borusyak et al.

(2024) to address clustering at the acquifer level and the unbalances due to the presence of

missing values.

Results. Figure VIII presents the results of this exercise. While areas with Water Boards

had slightly higher water table depth levels before the onset of the Megadrought, there is a

very substantial divergence after. After 10 years, areas without Water Boards have Water

Table depth levels almost 6 meters lower than areas without. This difference is approxi-

mately 30% of the water table depth for areas without water boards in 2020. While it is

hard to interpret this difference in terms of future water availability, the marginal cost of

groundwater pumping increases linearly on water table depth (Burlig et al., 2021), meaning

that this represents a substantial increase in extraction costs.
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Robustness. We argue that the presence of water boards impacts groundwater reclama-

tions through effective enforcement and monitoring. An alternative explanation would be

that areas without water boards may be receiving higher access to groundwater. For ex-

ample, as they lack local governance to coordinate actions, and therefore, they are more

sensitive to climate shocks, the authorities may authorize them to extract more groundwa-

ter. In figure X we explore explicitly this question by estimating equation 20 but with the

total volume of groundwater rights as outcome. The results show that there are no signif-

icant differences in reclamations; if anything, areas subject to water boards are receiving

more permits.

In an additional robustness check, we reestimate equation 20 but considering local time

trends (2 ◦ ×2◦ grid cell × year FE) . I present the results in Figure IX; the results remain

unchanged.

7 Welfare Gains from Governance

In this section, we quantify the long-run welfare gains stemming from governance, using a

sufficient statistic approach. We exploit the fact that under our theory, the path of ground-

water extraction under governance is efficient, and that our data allows us to estimate the

divergence between this path–socially efficient–to the Markov-Nash equilibrium.

The welfare loss under the Markov-Nash equilibrium relative to the socially efficient

allocation are:

WN (x0, s)−W ∗(x0, s) =
∑
i∈M

Es

{
vNi (x0, s)− v∗i (x0, s)|I0

}
=

∞∑
t=0

βt
∑
i∈M

Es

{
πN
i (xNt , s)− π∗

i (x
∗
t , s)|I0

} (21)

We can create a first-order Taylor approximation centered around the centralized allocation

for the terms associated to the Markov-Nash social welfare function, and substract the

25



centralized social welfare function to it12:

≊
∞∑
t=0

βt
∑
i∈M

Es

{
∂π∗

i (x
N
t , s)

∂x

(
xNt − x∗t

)
|I0
}

=
∞∑
t=0

βt
∑
i∈M

Es

{
π∗
i (x

∗
t , s)επ,x

(
xNt − x∗t

x∗t

)
|I0
} (22)

the former expression is written in terms of the remaining water in the acquifer, which is

a volume. In practice, we only have data on groundwater table depth–a height. Assuming

that the conversion between these two measures is equal to xt = (d0 − dt) ∗ κ, constant for

all acquifers in our sample13:

=
∞∑
t=0

βt
∑
i∈M

Es

{
π∗
i (x

∗
t , s)επ,d

(
(dN0 − dNt )− (d∗0 − d∗t )

(d∗0 − d∗t )

)
|I0
}

(23)

To quantify the welfare loss, in principle, we need the trajectory of profits under governance,

a discount rate, the elasticity of profits to water table depth and the relative decline of

acquifers without governance relative to those under governance. If we assume that the

trajectories will remain the same within a long horizon, and the elasticity of profits to

water table depth is constant, then the relative welfare loss due to the lack of governance is

a function of the elasticity of profits to groundwater table depth and the decline of acquifers

without governance relative to under governance:

WN (x0, s)−W ∗(x0, s)

W ∗(x0, s)
=επ,d

(
(dN0 − dNt )− (d∗0 − d∗t )

(d∗0 − d∗t )

)
(24)

Ryan and Sudarshan (2022) estimates of the impact of water table depth over profits

imply an elasticity of approximately −0.2.14 Using our DID estimates, we create counter-

12A first order approximation to the value function will only depend on the state, as long as the Envelope
Theorem allows to equate to zero the terms related to the control w. This is true as long as the groundwater
stock is away from zero. Therefore, the following results will only consider the increase in costs associated
to groundwater reduction, not groundwater depletion itself.

13Note that

επ,x =
x

π

∂π

∂x
=

κ(d0 − dt)

π

∂π

∂x
=

(d0 − dt)

π

∂π

∂(d0 − dt)
= επ,d

14They estimate that 1SD increase in water table depth reduces profits by 14%. We correct that number
using the fact that mean and standard deviation of water table depth in their sample are 288ft and 187,
respectively.
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factuals for each monitoring station. The effective and counterfactual trends in our panel

of groundwater monitoring stations imply
(
(dN0 −dNt )−(d∗0−d∗t )

(d∗0−d∗t )

)
= 0.88. These numbers imply

a welfare loss of approximately 20% due to lack of governance.

It is worthwhile to emphasize that these estimates correspond to a lower bound, given

that the estimates by Ryan and Sudarshan (2022) only account for the losses associated

to higher pumping costs, and not to the potential complete depletion of the resource. In

our model, this would be reflected by the shadow value of the positivity restriction (δ in

equation 5). While we do not have proper estimates of this value, Rafey (2023) and Garcia

and Belmar (2025) estimate very high shadow values of water for irrigated farms when the

amount of water available approaches to zero.

8 Conclusion

We develop and test a theory of how governance shapes adaptation to dryer environments.

A social planner would constrain farmers, limiting their ability to extract groundwater to

preserve it for future usage. While this is socially efficient and provide long run benefits, it

imposes medium-run costs. Our empirical analysis provides evidence of these mechanisms:

in the short run, governance over rivers may facilitate faster adaptation to droughts by

farmers; however, in the medium run, it may hinder the adoption of (potentially unsustain-

able) adaptations, such as increased groundwater extraction. This suggests that climate

change analyses focusing solely on agricultural outcomes –such as yield or revenue, as op-

posed to water flows and stocks– may overlook the future costs of short- and medium-run

adaptations adopted by unregulated agents. Our empirical setup allows not only to test

the model, but under some assumptions, to quantify the welfare loss associated to the lack

of governance. Our findings imply substantial losses related just to the increasing costs

channel.

We document also how these medium-run advantage by ungoverned farmers come at

the expense of future groundwater availability. Our framework suggest that this is socially

inefficient. At the same time, it highlights how adaptation to climate change can be polit-

ically challenging: a socially efficient adaptation imposes medium run costs, that are bore
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mostly by the least productive farmers. In the presence of economies of scale and fixed

costs, this will translate on regulation favoring larger farmers at the expense of poorer,

smaller ones, a policy politically complex to justify in many contexts around the world. We

show that most of the reductions in irrigated surface affect areas using traditional irrigation

techniques, while keeping unaffected the irrigated surface used by the largest, most capital-

intensive operations (e.g. macro-irrigation in the shape of sprinklers). Therefore, societies

choosing strategies to adapt to climate change may face non-trivial trade-offs between effi-

ciency and distributive concerns, both presently and intertemporally.
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10 Tables

Table I: FGLS Estimates of sensitivity to drought: Evapotranspiration

(1) (2) (3)

ETa Shock 0.966 0.901 0.580
(0.251)∗∗∗ (0.259)∗∗∗ (0.259)∗∗

Has WB × ETa Shock -0.807 -0.396 -0.329
(0.318)∗∗ (0.168)∗∗ (0.150)∗∗

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.654 0.761 0.781
Adj. R-squared 0.625 0.741 0.763
Mean Outcome 3.582 3.582 3.582
p-value: WB + WB x shock=0 0.705 0.051 0.315
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Table II: FGLS Estimates of sensitivity to drought: Peak EVI

(1) (2) (3)

Yield Shock 0.158 -0.0341 -0.111
(0.0835)∗ (0.0796) (0.0698)

Has WB × Yield Shock -0.160 -0.177 -0.124
(0.115) (0.0835)∗∗ (0.0645)∗

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.747 0.763 0.766
Adj. R-squared 0.726 0.743 0.747
Mean Outcome 0.499 0.499 0.499
p-value: WB + WB x shock=0 0.991 0.054 0.004
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Table III: Assymetric Effects over Evapotranspiration

(1) (2) (3)

ETa Shock > 0 0.126 -0.0953 -0.109
(0.159) (0.129) (0.119)

ETa Shock > 0 × Has WB 0.226 0.134 -0.0582
(0.283) (0.128) (0.0987)

ETa Shock 0.457 1.264 0.935
(0.671) (0.360)∗∗∗ (0.381)∗∗

ETa Shock > 0 × Shock ETa 0.857 -1.000 -0.982
(0.921) (0.577)∗ (0.530)∗

Has WB × Shock (ETA) -0.593 -0.629 -0.405
(0.495) (0.288)∗∗ (0.239)∗

ETa Shock > 0 × Has WB × ETa Shock -2.317 0.255 0.778
(2.267) (1.021) (0.796)

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.655 0.761 0.781
Adj. R-squared 0.626 0.741 0.763
Mean Outcome
p-value: WB + WB x shock=0
mean3
pval1
pval2
pval3
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Table IV: Assymetric Effects over EVI

(1) (2) (3)

Yield Shock > 0 0.0141 -0.000332 -0.00196
(0.00516)∗∗∗ (0.00280) (0.00231)

Yield Shock > 0× Has WB -0.00531 0.00261 0.00412
(0.00673) (0.00428) (0.00374)

Yield Shock 0.0845 -0.0897 -0.190
(0.101) (0.0977) (0.0860)∗∗

Yield Shock > 0 × Yield Shock -0.248 0.202 0.332
(0.316) (0.204) (0.172)∗

Has WB × Shock (ETA) -0.0743 -0.119 -0.187
(0.163) (0.138) (0.107)∗

Yield Shock > 0 × Has WB × Yield Shock 0.0225 -0.252 0.0163
(0.316) (0.263) (0.205)

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.747 0.763 0.766
Adj. R-squared 0.726 0.743 0.747
Mean Outcome
p-value: WB + WB x shock=0
mean3
pval1
pval2
pval3
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Table V: Heterogeneous Effects over Evapotranspiration, by land value.

Full sample

(1) (2) (3)

ETa Shock 1.021 0.965 0.644
(0.281)∗∗∗ (0.262)∗∗∗ (0.260)∗∗

Has WB ×ETa Shock -0.875 -0.461 -0.382
(0.347)∗∗ (0.188)∗∗ (0.151)∗∗

Land value≤ p25 ×ETa Shock -0.00280 -0.111 -0.102
(0.124) (0.0606)∗ (0.0528)∗

Land value≥ p75 ×ETa Shock -0.114 -0.0992 -0.101
(0.122) (0.0649) (0.0552)∗

Has WB × Land value≤ p25 × ETa Shock 0.152 0.323 0.294
(0.322) (0.136)∗∗ (0.105)∗∗∗

Has WB × Land value≥ p75 × ETa Shock 0.116 0.0690 0.0534
(0.226) (0.109) (0.0697)

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.654 0.761 0.781
Adj. R-squared 0.625 0.741 0.763
Mean Outcome 3.467 3.467 3.467
p-value: WB + WB x shock=0 3.733 3.733 3.733
mean3 3.508 3.508 3.508
pval1 0.651 0.024 0.089
pval2 0.750 0.064 0.299
pval3 0.722 0.061 0.391
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Table VI: Heterogeneous Effects over EVI, by land value.

Full sample

(1) (2) (3)

Yield Shock 0.101 -0.0839 -0.161
(0.0956) (0.0881) (0.0746)∗∗

Has WB × Shock (ETA) -0.175 -0.166 -0.0962
(0.155) (0.116) (0.0752)

Land value≤ p25 × Yield Shock -0.0102 0.0600 0.0581
(0.0418) (0.0438) (0.0392)

Land value≥ p75 × Yield Shock 0.130 0.0837 0.0888
(0.0621)∗∗ (0.0472)∗ (0.0492)∗

Has WB × Land value≤ p25 × Yield Shock 0.0177 0.0919 0.0757
(0.0813) (0.0661) (0.0690)

Has WB × Land value≥ p75 × Yield Shock 0.00706 -0.0484 -0.0701
(0.138) (0.0887) (0.0582)

Plot FE Yes Yes Yes

Year FE Yes No No

1x1 degree cell X year FE No Yes No

0.5x0.5 degree cell X year FE No No Yes

Observations 1196390 1196390 1196377
R-squared 0.747 0.763 0.766
Adj. R-squared 0.726 0.743 0.747
Mean Outcome 0.497 0.497 0.497
p-value: WB + WB x shock=0 0.524 0.524 0.524
mean3 0.482 0.482 0.482
pval1 0.695 0.393 0.167
pval2 0.684 0.078 0.005
pval3 0.541 0.021 0.005
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Table VII: Estimates of sentitivity to streamflow and precipitation shocks

Evapotranspiration

(1) (2) (3) (4) (5) (6)

quantile Streamflow 0.0102 0.0104 0.00972 0.00971
(0.00409)∗∗ (0.00367)∗∗∗ (0.00405)∗∗ (0.00371)∗∗∗

Has JV × quantile Streamflow -0.00289 -0.00362 -0.00340 -0.00360
(0.00147)∗∗ (0.00129)∗∗∗ (0.00177)∗ (0.00157)∗∗

Annual Precipitation 0.00808 0.00830 0.00676 0.00663
(0.00166)∗∗∗ (0.00164)∗∗∗ (0.00172)∗∗∗ (0.00168)∗∗∗

Has JV × Annual Prec. -0.000234 -0.000837 0.000649 0.0000733
(0.000882) (0.000665) (0.00107) (0.000825)

Summer Precipitation 0.00235 0.00344
(0.000980)∗∗ (0.00114)∗∗∗

Temperature Controls Yes Yes Yes Yes Yes Yes

Plot FE Yes Yes Yes Yes Yes Yes

1x1 degree cell X year FE Yes No Yes No Yes No

0.5x0.5 degree cell X year FE No Yes No Yes No Yes

Observations 3323610 3323610 3323610 3323610 3323610 3323610
R-squared 0.728 0.751 0.729 0.751 0.729 0.751
Adj. R-squared 0.712 0.736 0.713 0.736 0.713 0.736

Yield

(1) (2) (3) (4) (5) (6)

quantile Streamflow 0.000567 0.000663 0.000520 0.000571
(0.000214)∗∗∗ (0.000196)∗∗∗ (0.000216)∗∗ (0.000198)∗∗∗

Has JV × quantile Streamflow -0.000208 -0.0000800 -0.0000986 0.0000768
(0.0000922)∗∗ (0.0000822) (0.000115) (0.0000993)

Annual Precipitation -0.000000594 0.000158 0.0000150 0.000195
(0.0000976) (0.0000998) (0.0000983) (0.000100)∗

Has JV × Annual Prec. -0.000119 -0.000100 -0.0000863 -0.000116
(0.0000441)∗∗∗ (0.0000396)∗∗ (0.0000555) (0.0000485)∗∗

Summer Precipitation -0.0000744 -0.000134
(0.0000483) (0.0000545)∗∗

Temperature Controls Yes Yes Yes Yes Yes Yes

Plot FE Yes Yes Yes Yes Yes Yes

1x1 degree cell X year FE Yes No Yes No Yes No

0.5x0.5 degree cell X year FE No Yes No Yes No Yes

Observations 3323610 3323610 3323610 3323610 3323610 3323610
R-squared 0.744 0.748 0.744 0.748 0.744 0.748
Adj. R-squared 0.729 0.733 0.729 0.733 0.729 0.734
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(1) (2)
Pre Megadrought, No WB Pre Megadrought, Has WB

Mean SD p10 p90 Min Max Mean SD p10 p90 Min Max

Evapotranspiration (ETa)(Jan-Feb) 3.744 1.5 1.7 5.6 0.0 12.5 3.452 1.4 1.6 5.3 0.0 8.2
Peak EVI 0.516 0.1 0.3 0.7 0.0 1.0 0.490 0.1 0.3 0.7 -0.1 1.0
Pred. ETa using Elastic Net -0.000 0.2 -0.3 0.3 -1.1 1.5 -0.000 0.2 -0.3 0.2 -1.1 0.7
Pred. Peak EVI using Elastic Net -0.001 0.0 -0.0 0.0 -0.2 0.2 -0.000 0.0 -0.0 0.0 -0.1 0.2
Predicted ETa using LASSO -0.000 0.2 -0.3 0.3 -0.8 1.0 0.000 0.2 -0.2 0.2 -0.8 0.6
Pred. Peak EVI using LASSO 0.000 0.0 -0.0 0.0 -0.1 0.3 0.000 0.0 -0.0 0.0 -0.2 0.3
Mean Year Prec. 169.909 68.7 83.1 265.0 7.0 372.0 121.364 49.4 58.6 183.1 5.0 286.7
Number of days with Max T¿25C 52.594 39.5 10.0 114.0 0.0 142.0 56.840 32.7 14.0 100.5 0.0 133.0
Number of days with Max T¿29C 19.432 22.6 0.0 58.0 0.0 87.0 22.531 19.8 1.0 56.0 0.0 87.0
Number of days with Max T¿31C 9.318 13.5 0.0 31.0 0.0 68.0 11.447 13.0 0.0 32.0 0.0 67.0
Number of days with Max T¿35C 1.347 3.6 0.0 4.0 0.0 24.0 1.765 3.3 0.0 7.0 0.0 23.0

Observations 489453 206549
(1) (2)

Post Megadrought, No WB Post Megadrought, Has WB
Mean SD p10 p90 Min Max Mean SD p10 p90 Min Max

Evapotranspiration (ETa)(Jan-Feb) 3.661 1.5 1.7 5.5 0.0 10.6 3.367 1.4 1.6 5.2 0.0 8.8
Peak EVI 0.498 0.1 0.3 0.7 0.0 1.0 0.468 0.2 0.3 0.7 -0.1 1.0
Pred. ETa using Elastic Net -0.281 0.4 -0.7 0.1 -4.8 3.1 -0.288 0.3 -0.7 0.0 -4.8 1.3
Pred. Peak EVI using Elastic Net -0.034 0.0 -0.1 0.0 -0.4 0.1 -0.025 0.0 -0.1 0.0 -0.2 0.5
Predicted ETa using LASSO -0.233 0.3 -0.6 0.1 -2.5 2.3 -0.223 0.3 -0.6 0.0 -2.5 1.0
Pred. Peak EVI using LASSO -0.031 0.0 -0.1 0.0 -0.2 0.2 -0.031 0.0 -0.1 0.0 -0.3 0.2
Mean Year Prec. 142.573 59.7 70.4 224.7 6.5 334.3 100.058 40.8 48.3 149.7 4.8 252.8
Number of days with Max T¿25C 60.906 43.0 12.0 126.0 0.0 158.0 65.315 36.1 17.0 114.0 0.0 158.0
Number of days with Max T¿29C 24.238 26.2 1.0 68.0 0.0 111.0 27.758 22.6 2.0 61.0 0.0 109.0
Number of days with Max T¿31C 12.216 16.6 0.0 39.0 0.0 87.0 14.993 15.7 0.0 40.0 0.0 86.0
Number of days with Max T¿35C 2.205 5.5 0.0 8.0 0.0 34.0 3.162 5.5 0.0 12.0 0.0 34.0

Observations 782804 324577

(1) (2)
No Board Water Board

Mean SD p10 p90 Min Max Mean SD p10 p90 Min Max

Total Area County 686.585 456.2 175.7 1291.9 8.1 2127.4 971.289 1182.1 112.3 2296.4 47.3 7579.2
Total Irrigable Surface 195.557 221.1 22.7 517.5 0.1 1134.5 147.134 152.8 26.2 380.1 0.7 729.9
Total irr. surf. 2007 (share irr. area) 0.114 0.1 0.0 0.4 0.0 0.6 0.818 2.0 0.1 1.0 0.0 20.7
Total irr. surf. 2021 (share irr. area) 0.103 0.1 0.0 0.3 0.0 0.6 0.379 0.5 0.1 0.6 0.0 5.6
Surf. trad irr. 2007 (share irr. area) 0.070 0.1 0.0 0.2 0.0 0.4 0.560 1.5 0.1 0.7 0.0 16.1
Surf. trad irr. 2021 (share irr. area) 0.032 0.0 0.0 0.1 0.0 0.2 0.168 0.3 0.0 0.3 0.0 3.2
Surf. Microirr. 2007 (share irr. area) 0.031 0.1 0.0 0.1 0.0 0.3 0.239 0.4 0.0 0.5 0.0 3.7
Surf. Microirr. 2021 (share irr. area) 0.052 0.1 0.0 0.2 0.0 0.4 0.193 0.3 0.0 0.3 0.0 2.3
Surf. Macroirr. 2007 (share irr. area) 0.012 0.0 0.0 0.0 0.0 0.1 0.019 0.1 0.0 0.0 0.0 0.9
Surf. Macroirr. 2021 (share irr. area) 0.018 0.0 0.0 0.1 0.0 0.1 0.018 0.0 0.0 0.1 0.0 0.1
Total surface fruits 2007 (share irr. area) 0.032 0.0 0.0 0.1 0.0 0.3 0.368 1.0 0.0 0.6 0.0 10.0
Total surface fruits 2021 (share irr. area) 0.047 0.1 0.0 0.2 0.0 0.3 0.278 0.4 0.0 0.5 0.0 3.8
2007 Prec.(Winter) avg 2001-2006 932.448 404.5 489.8 1557.4 404.7 1972.1 779.029 393.5 240.9 1396.4 19.3 1740.7
2007 Prec.(Spring) avg 2001-2006 501.500 265.9 237.3 913.6 193.2 1206.6 385.733 236.9 116.8 767.4 7.8 1028.5
2007 Prec.(Summer) avg 2001-2006 100.511 95.4 18.3 262.3 11.6 347.3 100.513 48.4 46.5 175.4 2.9 231.0
Dif (5yr) 2007 Prec.(Winter) in 2020 -328.979 110.4 -477.1 -191.2 -604.7 -152.4 -285.039 149.5 -492.9 -72.5 -617.7 -6.8
Dif (5yr) 2007 Prec.(Spring) in 2020 -63.217 23.1 -96.7 -38.3 -141.6 -24.1 -44.264 40.1 -105.3 1.3 -148.1 12.8
Dif (5yr) 2007 Prec.(Summer) in 2020 -26.680 20.0 -57.7 -7.6 -73.2 -3.8 -28.170 12.8 -47.2 -14.1 -59.8 -1.0
Dif (5yr) 2007 Days above 25C avg 2015-2020 10.558 9.3 0.0 22.5 0.0 31.1 12.223 7.7 2.6 23.4 -0.0 27.9
Dif (5yr) 2007 Days above 29C avg 2015-2020 5.253 6.3 0.0 14.7 -0.1 23.2 5.868 4.8 0.8 13.0 -0.0 15.7
Dif (5yr) 2007 Days above 31C avg 2015-2020 3.113 4.8 0.0 10.0 -0.1 19.2 3.723 3.3 0.3 9.6 0.1 11.7
Dif (5yr) 2007 Days above 35C avg 2015-2020 0.339 0.6 0.0 1.0 -0.1 4.5 1.265 1.6 0.0 4.0 0.0 5.9
2007 lat -36.598 1.9 -38.8 -33.7 -39.4 -32.5 -33.888 1.8 -36.6 -31.4 -37.3 -29.8
2007 lon -72.280 0.6 -73.1 -71.5 -73.6 -70.7 -71.082 0.5 -71.8 -70.6 -72.3 -70.1

Observations 107 109

Table VIII: Results: irrigated area

Total irrigated sh. Trad. irr. Microirr. Macroirr..

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Has WB in 2007 -0.427 -0.223 -0.299 -0.355 -0.202 -0.275 -0.0664 -0.0316 -0.0297 -0.00621 0.0101 0.00553
(0.139)∗∗∗ (0.0529)∗∗∗ (0.158)∗ (0.119)∗∗∗ (0.0441)∗∗∗ (0.135)∗∗ (0.0207)∗∗∗ (0.0151)∗∗ (0.0190) (0.00833) (0.00457)∗∗ (0.00945)

Dif Prec 5yr (by season) No No Yes No No Yes No No Yes No No Yes

Dif High T days 5yr No No Yes No No Yes No No Yes No No Yes

Region FE No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Observations 216 216 216 216 216 216 216 216 216 216 216 216
R-squared 0.041 0.073 0.209 0.039 0.068 0.196 0.045 0.230 0.335 0.003 0.061 0.218
Mean Dependent Var. -0.227 -0.227 -0.227 -0.217 -0.217 -0.217 -0.013 -0.013 -0.013 0.003 0.003 0.003
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Table IX: Results: fruit trees planted surface

Fruit trees planted area

(1) (2) (3)

Has WB in 2007 -0.104 -0.0525 -0.0854
(0.0587)∗ (0.0241)∗∗ (0.0665)

Dif Prec 5yr (by season) No No Yes

Dif High T days 5yr No No Yes

Region FE No Yes Yes

cons Yes No No

Observations 216 216 216
R-squared 0.014 0.047 0.185
Mean Dependent Var. -0.038 -0.038 -0.038

Table X: Summary Statistics

(1) (2)
No Board Water Board

Mean SD p10 p90 Min Max Mean SD p10 p90 Min Max

Total Area County 686.585 456.2 175.7 1291.9 8.1 2127.4 971.289 1182.1 112.3 2296.4 47.3 7579.2
Total Irrigable Surface 195.557 221.1 22.7 517.5 0.1 1134.5 147.134 152.8 26.2 380.1 0.7 729.9
Total irr. surf. 2007 (share irr. area) 0.114 0.1 0.0 0.4 0.0 0.6 0.818 2.0 0.1 1.0 0.0 20.7
Total irr. surf. 2021 (share irr. area) 0.103 0.1 0.0 0.3 0.0 0.6 0.379 0.5 0.1 0.6 0.0 5.6
Surf. trad irr. 2007 (share irr. area) 0.070 0.1 0.0 0.2 0.0 0.4 0.560 1.5 0.1 0.7 0.0 16.1
Surf. trad irr. 2021 (share irr. area) 0.032 0.0 0.0 0.1 0.0 0.2 0.168 0.3 0.0 0.3 0.0 3.2
Surf. Microirr. 2007 (share irr. area) 0.031 0.1 0.0 0.1 0.0 0.3 0.239 0.4 0.0 0.5 0.0 3.7
Surf. Microirr. 2021 (share irr. area) 0.052 0.1 0.0 0.2 0.0 0.4 0.193 0.3 0.0 0.3 0.0 2.3
Surf. Macroirr. 2007 (share irr. area) 0.012 0.0 0.0 0.0 0.0 0.1 0.019 0.1 0.0 0.0 0.0 0.9
Surf. Macroirr. 2021 (share irr. area) 0.018 0.0 0.0 0.1 0.0 0.1 0.018 0.0 0.0 0.1 0.0 0.1
Total surface fruits 2007 (share irr. area) 0.032 0.0 0.0 0.1 0.0 0.3 0.368 1.0 0.0 0.6 0.0 10.0
Total surface fruits 2021 (share irr. area) 0.047 0.1 0.0 0.2 0.0 0.3 0.278 0.4 0.0 0.5 0.0 3.8
2007 Prec.(Winter) avg 2001-2006 932.448 404.5 489.8 1557.4 404.7 1972.1 779.029 393.5 240.9 1396.4 19.3 1740.7
2007 Prec.(Spring) avg 2001-2006 501.500 265.9 237.3 913.6 193.2 1206.6 385.733 236.9 116.8 767.4 7.8 1028.5
2007 Prec.(Summer) avg 2001-2006 100.511 95.4 18.3 262.3 11.6 347.3 100.513 48.4 46.5 175.4 2.9 231.0
Dif (5yr) 2007 Prec.(Winter) in 2020 -328.979 110.4 -477.1 -191.2 -604.7 -152.4 -285.039 149.5 -492.9 -72.5 -617.7 -6.8
Dif (5yr) 2007 Prec.(Spring) in 2020 -63.217 23.1 -96.7 -38.3 -141.6 -24.1 -44.264 40.1 -105.3 1.3 -148.1 12.8
Dif (5yr) 2007 Prec.(Summer) in 2020 -26.680 20.0 -57.7 -7.6 -73.2 -3.8 -28.170 12.8 -47.2 -14.1 -59.8 -1.0
Dif (5yr) 2007 Days above 25C avg 2015-2020 10.558 9.3 0.0 22.5 0.0 31.1 12.223 7.7 2.6 23.4 -0.0 27.9
Dif (5yr) 2007 Days above 29C avg 2015-2020 5.253 6.3 0.0 14.7 -0.1 23.2 5.868 4.8 0.8 13.0 -0.0 15.7
Dif (5yr) 2007 Days above 31C avg 2015-2020 3.113 4.8 0.0 10.0 -0.1 19.2 3.723 3.3 0.3 9.6 0.1 11.7
Dif (5yr) 2007 Days above 35C avg 2015-2020 0.339 0.6 0.0 1.0 -0.1 4.5 1.265 1.6 0.0 4.0 0.0 5.9
2007 lat -36.598 1.9 -38.8 -33.7 -39.4 -32.5 -33.888 1.8 -36.6 -31.4 -37.3 -29.8
2007 lon -72.280 0.6 -73.1 -71.5 -73.6 -70.7 -71.082 0.5 -71.8 -70.6 -72.3 -70.1

Observations 107 109
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Table XI: Results: irrigated area

Total irrigated sh. Trad. irr. Microirr. Macroirr..

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Has WB in 2007 -0.427 -0.223 -0.299 -0.355 -0.202 -0.275 -0.0664 -0.0316 -0.0297 -0.00621 0.0101 0.00553
(0.139)∗∗∗ (0.0529)∗∗∗ (0.158)∗ (0.119)∗∗∗ (0.0441)∗∗∗ (0.135)∗∗ (0.0207)∗∗∗ (0.0151)∗∗ (0.0190) (0.00833) (0.00457)∗∗ (0.00945)

Dif Prec 5yr (by season) No No Yes No No Yes No No Yes No No Yes

Dif High T days 5yr No No Yes No No Yes No No Yes No No Yes

Region FE No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Observations 216 216 216 216 216 216 216 216 216 216 216 216
R-squared 0.041 0.073 0.209 0.039 0.068 0.196 0.045 0.230 0.335 0.003 0.061 0.218
Mean Dependent Var. -0.227 -0.227 -0.227 -0.217 -0.217 -0.217 -0.013 -0.013 -0.013 0.003 0.003 0.003

Table XII: Results: fruits planted surface

Fruit trees planted area

(1) (2) (3)

Has WB in 2007 -0.104 -0.0525 -0.0854
(0.0587)∗ (0.0241)∗∗ (0.0665)

Dif Prec 5yr (by season) No No Yes

Dif High T days 5yr No No Yes

Region FE No Yes Yes

cons Yes No No

Observations 216 216 216
R-squared 0.014 0.047 0.185
Mean Dependent Var. -0.038 -0.038 -0.038

Table XIII: Regression Results: Change in Irrigated Area (2007–2021)

Total irrigated sh. Trad. irr. Microirr. Macroirr..

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Has WB in 2007 -0.427 -0.223 -0.299 -0.355 -0.202 -0.275 -0.0664 -0.0316 -0.0297 -0.00621 0.0101 0.00553
(0.139)∗∗∗ (0.0529)∗∗∗ (0.158)∗ (0.119)∗∗∗ (0.0441)∗∗∗ (0.135)∗∗ (0.0207)∗∗∗ (0.0151)∗∗ (0.0190) (0.00833) (0.00457)∗∗ (0.00945)

Dif Prec 5yr (by season) No No Yes No No Yes No No Yes No No Yes

Dif High T days 5yr No No Yes No No Yes No No Yes No No Yes

Region FE No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Observations 216 216 216 216 216 216 216 216 216 216 216 216
R-squared 0.041 0.073 0.209 0.039 0.068 0.196 0.045 0.230 0.335 0.003 0.061 0.218
Mean Dependent Var. -0.227 -0.227 -0.227 -0.217 -0.217 -0.217 -0.013 -0.013 -0.013 0.003 0.003 0.003
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Table XIV: Regression Results: Change in Fruit Tree Area (2007–2021)

Fruit trees planted area

(1) (2) (3)

Has WB in 2007 -0.104 -0.0525 -0.0854
(0.0587)∗ (0.0241)∗∗ (0.0665)

Dif Prec 5yr (by season) No No Yes

Dif High T days 5yr No No Yes

Region FE No Yes Yes

cons Yes No No

Observations 216 216 216
R-squared 0.014 0.047 0.185
Mean Dependent Var. -0.038 -0.038 -0.038

11 Figures

Figure I: Standardized streamflow and precipitation trends.
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Figure II: Water Board jurisdictions, colored by year of establishment.

Figure III: Farm level summer evapotranspiration estimates for the Aconcagua Basin (2000-
2005).
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Figure IV: Predicted ETa by Water Board presence and year.

Figure V: Predicted ETa by Water Board presence and year.

44



Figure VI: Asymmetric Damage functions: Impact of drought shock on water consumption

Notes: This figure present estimates of equation 18 for water consumption. Function represents range
between percentile 5 and 95 of shocks.
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(a) Average water table depth, by Water Board presence, for monitoring stations with data at least
from 1998 onwards. Negative numbers correspond to lower water table levels, indicating dryer wells.

(b) Inverse hyperbolic sine of total groundwater rights created, by Water Board presence.

Figure VII: Raw data for water table depth and groundwater rights.
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Figure VIII: DID estimates of water table depth

Notes: Positive numbers correspond to higher water table levels, indicating less dry wells
relative to the control (no Water Board) group.
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Figure IX: DID estimates of water table depth, controlling for 2◦ × 2◦ grid cell × year FE

Notes: Positive βts mean higher water table levels, indicating less dry wells relative to
control group.
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Figure X: Placebo: DID estimates of groundwater rights reclamations

Notes: Positive βts mean higher water table levels, indicating less dry wells relative to
control group.

49



Figure XI: Diagram: construction of the Drought index.

Training Data

2000–2004
yit, xi, wgt

Analyisis Data

2005–2019
yit, xi, wgt

Train LASSO
on 2000–2004

ĝ(·, ·)

Apply model to
2005–2019

ŷit = ĝ(xi, wgt)

TWFE regression

yit = β1 (ŷit − ŷi00−07) + β2 × 1 [Has WB] × (ŷit − ŷi00−07) + αi + δgt + εit

Data Prediction

Estimation

50



A Appendix

Table XV: Damage Function estimates: alternative specifications

Panel A: LASSO, weigthing by Inverse MSE

Evapotranspiration Yield

(1) (2) (3) (4) (5) (6)

ETa Shock 0.603 0.130 0.170
(0.0783)∗∗∗ (0.0479)∗∗∗ (0.0489)∗∗∗

Has JV × Shock (ETA) -0.266 -0.182 -0.168
(0.110)∗∗ (0.0477)∗∗∗ (0.0424)∗∗∗

Yield Shock 0.384 0.0900 0.00864
(0.0480)∗∗∗ (0.0421)∗∗ (0.0390)

Has JV × Shock (Yield) 0.0788 -0.0452 -0.0154
(0.0546) (0.0394) (0.0325)

Plot FE Yes Yes Yes Yes Yes Yes

Year FE Yes No No Yes No No

1x1 degree cell X year FE No Yes No No Yes No

0.5x0.5 degree cell X year FE No No Yes No No Yes

Observations 1803383 1803383 1803366 1803383 1803383 1803366
R-squared 0.631 0.750 0.771 0.711 0.731 0.735
Adj. R-squared 0.609 0.735 0.757 0.694 0.715 0.720

Panel B: Elastic Net, weigthing by Inverse MSE

Evapotranspiration Yield

(1) (2) (3) (4) (5) (6)

ETa Shock 0.707 0.297 0.296
(0.0883)∗∗∗ (0.0653)∗∗∗ (0.0672)∗∗∗

Has JV × Shock (ETA) -0.349 -0.206 -0.175
(0.101)∗∗∗ (0.0487)∗∗∗ (0.0432)∗∗∗

Yield Shock 0.197 0.102 0.0613
(0.0383)∗∗∗ (0.0373)∗∗∗ (0.0395)

Has JV × Shock (Yield) -0.120 -0.116 -0.0843
(0.0696)∗ (0.0350)∗∗∗ (0.0287)∗∗∗

Plot FE Yes Yes Yes Yes Yes Yes

Year FE Yes No No Yes No No

1x1 degree cell X year FE No Yes No No Yes No

0.5x0.5 degree cell X year FE No No Yes No No Yes

Observations 1803383 1803383 1803366 1812078 1812078 1812060
R-squared 0.628 0.745 0.766 0.708 0.730 0.734
Adj. R-squared 0.606 0.730 0.752 0.691 0.714 0.719
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Table XVI: Asymmetric Damage Function estimates

Evapotranspiration Yield

(1) (2) (3) (4) (5) (6)

1(ETa Shock > 0 ) 0.0390 -0.0434 -0.0239
(0.0471) (0.0227)∗ (0.0206)

Has JV × 1(ETa Shock > 0 ) -0.0423 0.0648 0.0665
(0.0610) (0.0367)∗ (0.0324)∗∗

ETa Shock 0.773 0.0958 0.162
(0.145)∗∗∗ (0.0786) (0.0797)∗∗

1(ETa Shock > 0 )× ETa Shock -0.442 0.182 0.0912
(0.195)∗∗ (0.121) (0.114)

Has JV × ETa Shock -0.602 -0.232 -0.237
(0.191)∗∗∗ (0.0831)∗∗∗ (0.0741)∗∗∗

Has JV × 1(ETa Shock > 0 )× ETa Shock 1.387 -0.0442 -0.000670
(0.362)∗∗∗ (0.203) (0.184)

1(Yield Shock > 0 ) -0.00188 -0.00332 -0.00317
(0.00216) (0.00139)∗∗ (0.00128)∗∗

Has JV × 1(Yield Shock > 0 ) 0.00123 0.00710 0.00566
(0.00374) (0.00241)∗∗∗ (0.00216)∗∗∗

Yield Shock 0.167 -0.00336 -0.0683
(0.0558)∗∗∗ (0.0530) (0.0527)

1(Yield Shock > 0 )× Yield Shock 1.007 0.559 0.499
(0.172)∗∗∗ (0.121)∗∗∗ (0.113)∗∗∗

Has JV × Yield Shock 0.144 -0.00504 0.0146
(0.0676)∗∗ (0.0554) (0.0481)

Has JV × 1(Yield Shock > 0 ) × Yield Shock -0.261 -0.623 -0.503
(0.291) (0.185)∗∗∗ (0.155)∗∗∗

Plot FE Yes Yes Yes Yes Yes Yes

Year FE Yes No No Yes No No

1x1 degree cell X year FE No Yes No No Yes No

0.5x0.5 degree cell X year FE No No Yes No No Yes

Observations 1803383 1803383 1803366 1803383 1803383 1803366
R-squared 0.632 0.750 0.771 0.713 0.731 0.735
Adj. R-squared 0.610 0.735 0.757 0.696 0.715 0.720
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Table XVII: Damage Function estimates: Streamflow shocks

Evapotranspiration Yield

(1) (2) (3) (4) (5) (6)

Streamflow Shock 0.00126 0.00398 0.00540 0.000809 0.000410 0.000465
(0.00337) (0.00400) (0.00395) (0.000133)∗∗∗ (0.000215)∗ (0.000211)∗∗

Has JV × Streamflow Shock -0.00613 -0.00184 -0.00107 0.000144 -0.000109 0.00000134
(0.00209)∗∗∗ (0.00107)∗ (0.000991) (0.000113) (0.0000741) (0.0000674)

Plot FE Yes Yes Yes Yes Yes Yes

Year FE Yes No No Yes No No

1x1 degree cell X year FE No Yes No No Yes No

0.5x0.5 degree cell X year FE No No Yes No No Yes

Observations 2013420 2013420 2013400 2013420 2013420 2013400
R-squared 0.616 0.747 0.769 0.698 0.730 0.736
Adj. R-squared 0.596 0.733 0.757 0.682 0.716 0.722

Table XVIII: Asymmetric Damage Function estimates: Streamflow shocks

Evapotranspiration Yield

(1) (2) (3) (4) (5) (6)

1(Streamflow Shock > 0 ) -0.408 -0.144 -0.0569 -0.0452 -0.0341 -0.0149
(0.0820)∗∗∗ (0.0821)∗ (0.0777) (0.00593)∗∗∗ (0.00991)∗∗∗ (0.00666)∗∗

Has JV × 1(Streamflow Shock > 0 ) 0.242 0.0375 -0.00797 -0.00440 -0.00741 -0.00272
(0.104)∗∗ (0.0711) (0.0500) (0.00694) (0.00588) (0.00422)

Streamflow Shock 0.00182 0.00572 0.00628 0.000637 0.000313 0.000242
(0.00393) (0.00424) (0.00426) (0.000145)∗∗∗ (0.000226) (0.000217)

1(ETa Shock > 0 ) × Streamflow Shock 0.0508 -0.00918 -0.00763 0.00645 0.00491 0.00465
(0.0163)∗∗∗ (0.0259) (0.0247) (0.000901)∗∗∗ (0.00160)∗∗∗ (0.00147)∗∗∗

Has JV × Streamflow Shock -0.00658 -0.000924 -0.000159 0.000366 0.000144 0.000204
(0.00339)∗ (0.00186) (0.00168) (0.000149)∗∗ (0.000116) (0.000103)∗∗

Has JV × 1(Streamflow Shock > 0 ) × Streamflow Shock -0.0379 -0.0120 -0.00460 -0.00145 -0.000309 -0.000838
(0.0135)∗∗∗ (0.00827) (0.00649) (0.000927) (0.000658) (0.000531)

Plot FE Yes Yes Yes Yes Yes Yes

Year FE Yes No No Yes No No

1x1 degree cell X year FE No Yes No No Yes No

0.5x0.5 degree cell X year FE No No Yes No No Yes

Observations 2013420 2013420 2013400 2013420 2013420 2013400
R-squared 0.618 0.747 0.769 0.702 0.730 0.736
Adj. R-squared 0.598 0.733 0.757 0.686 0.716 0.722
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Table XIX: Elastic net linear model for Evapotranspiration

N Observations 376,868
N covariates 1,477

Cluster: Basin x year N clusters 84
Selection: Cross-validation N CV folds 5

alpha ID Description lambda
N non-zero
coef.

Out-of-Sample
R-squared

CV mean
prediction
error

0.900
1 first lambda 8.285613 0 -0.0058 2.298691
29 last lambda .0549025 66 0.2961 1.608839

0.500
30 first lambda 8.285613 0 -0.0058 2.298691
55 last lambda .0964918 88 0.3011 1.59742

0.300
56 first lambda 8.285613 0 -0.0058 2.298691
78 last lambda .1695853 108 0.3111 1.574435

0.100
79 first lambda 8.285613 0 -0.0044 2.295592
93 lambda before .7628681 150 0.3256 1.54144
* 94 selected lambda .6321452 166 0.3259 1.540763
95 lambda after .5238225 182 0.3251 1.542477
97 last lambda .3596821 201 0.3132 1.569636

Notes: * alpha and lambda selected by cross-validation.
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Table XX: Elastic net linear model for EVI Peak

N Observations 376,868
N covariates 1,477

Cluster: Basin x year N clusters 84
Selection: Cross-validation N CV folds 5

alpha ID Description lambda
N non-zero
coef.

Out-of-Sample
R-squared

CV mean
prediction
error

0.500
1 first lambda .7243926 0 -0.0114 .0221962
22 last lambda .0012361 198 0.3218 .0148841

0.300
23 first lambda .7243926 0 -0.0114 .0221962
37 lambda before .0114171 76 0.3361 .0145682

* 38 selected lambda .0083105 88 0.3408 .0144651
39 lambda after .0060491 105 0.3393 .0144982
41 last lambda .003205 170 0.3340 .014615

0.100
42 first lambda .7243926 0 -0.0078 .0221153
58 last lambda .0060491 218 0.3237 .0148423

Notes: * alpha and lambda selected by cross-validation.
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B Properties of the Value Function andMarginal Value Func-

tions when x = 0

To compare the marginal value of groundwater as a function of the weather, let’s consider

the limit case when the acquifer is depleted. The value function takes the following values:

vi(0, D) =fi(0) +
∑
t≥1

βt(1− p)fi(µ) =
∑
t≥1

βt(1− p)fi(µ) =
βfi(µ)(1− p)

1− β

vi(0, N) =fi(µ) +
∑
t≥1

βt(1− p)fi(µ) = fi(µ) +
βf(µ)(1− p)

1− β
= fi(µ) + vi(0, D)

(25)

so if fi(µ) > 0, then the value of being in a normal period is strictly greater than the value

of being in a drought: the per-period utility while being in a drought with no groundwater

is zero, and so all the value comes from future periods15.

To analyze the marginal value of groundwater when the acquifer is depleted, we need

to revisit the farmer’s problem. If the state is s = D, the Bellman equation is

vi(0, D) =max
wi

πi(0, 0) + βEs′vi(0, s
′)− λD

i [wi − 0]

FOC(wi) :
∂vi(0, D)

∂w
= 0 ⇐⇒ ∂πi(0, 0)

∂w
− βEs′

∂vi(0, s
′)

∂x
= λD

i > 0

(27)

where we use the fact that the restriction is binding (so λ > 0) and
∂x′

∂w
= −1. For state

s = N , the previous exercise yields

∂πi(µ, 0)

∂w
− βEs′

∂vi(0, s
′)

∂x
= λN

i > 0 (28)

15Note that this implies the same relationship between the value functions at the social level: once the
acquifer is depleted

W (0, D) =

M∑
i=1

vi(0, D)

W (0, N) =

M∑
i=1

fi(µ) +

M∑
i=1

vi(0, D) =

M∑
i=1

fi(µ) +W (0, D)

(26)

56



The envelope condition is

∂vi(0, D)

∂x
=

∂πi
∂w

∂wi

∂x
+ βEs′

∂vi(0, s
′)

∂x

[
∂x′

∂w

∂w

∂x
+

∂x′

∂x

]
(29)

∂vi(0, D)

∂x
=

[
∂πi
∂w

+ βEs′
∂vi(0, s

′)

∂x

∂x′

∂w

]
∂wi

∂x
+ βEs′

∂vi(0, s
′)

∂x

[
∂x′

∂x

]
(30)

We can now use equation 27 combined with
∂x′

∂x
= 1,

∂x′

∂w
= −1 and we get

∂vi(0, D)

∂x
= λD

i

∂wi

∂x
+ βp

∂vi(0, D)

∂x
+ β(1− p)

∂vi(0, N)

∂x
(31)

Replicating this procedure under state s = N yields

∂vi(0, N)

∂x
= λN

i

∂wi

∂x
+ βp

∂vi(0, D)

∂x
+ β(1− p)

∂vi(0, N)

∂x
(32)

Equations 31 and 32 imply that

∂vi(0, D)

∂x
− ∂vi(0, N)

∂x
= λD

i

∂wi

∂x
− λN

i

∂wi

∂x
=

∂πi(0, 0)

∂w

∂wi

∂x
− ∂πi(µ, 0)

∂w

∂wi

∂x
> 0 (33)

where the last inequality follows from the concavity of the production function, and the

fact that
∂wi(s = D)

∂x
≥ ∂wi(s = N)

∂x
as the shadow value of the positivity restriction must

be higher during droughts. The problem of the planner in this context is trivial, as the

restrictions imposed by the planner cannot “bind more” than the depletion of the acquifer.

Therefore, it is reasonable to assume that these results for the farmer’s problem are inherited

by the planner’s.

Marginal value of groundwater for values of x near 0

Note that the previous expressions are strict inequalities. Therefore, the inequalities involv-

ing the value function are preserved for values of x → 0. This is also true for the marginal

value of groundwater if the derivative of the value function is continuous. However, we may

want to explore these relationships when x is “approaching zero” in a more conceptual sense.

A natural extension is to consider values of x for which the water availability restriction is
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binding.

The problem of the planner if s = D is

W (x,D) =max
w̄≤x

∑
i

πi(0, x) + βEs′W (0, s′)− λD
i

[∑
i

w̄i − x

]

FOC(wi) :
∂W (0, D)

∂w̄
= 0 ⇐⇒ ∂πi(w̄, x)

∂w̄
− βEs′

∂W (0, s′)

∂x
= λD(x) > 0

(34)

where we write the shadow value of groundwater as a function of the stock, to distinguish

it from the case where x = 0. The envelope condition in this case is

∂W (x,D)

∂x
=
∑
i

∂πi(w̄i, x)

∂w̄i

∂wi

∂x
+
∑
i

∂πi(w̄i, x)

∂x
+ βEs′

∂W (0, s′)

∂x

[∑
i

∂x′

∂w̄i

∂w̄i

∂x
+

∂x′

∂x

]
∂W (x,D)

∂x
=
∑
i

[
∂πi
∂w

+ βEs′
∂W (0, s′)

∂x

∂x′

∂w

]
∂wi

∂x
+
∑
i

∂πi(w̄i, x)

∂x
+ βEs′

∂W (0, s′)

∂x

[
∂x′

∂x

]
(35)

and replacing the FOC

∂W (x,D)

∂x
=
∑
i

[
λD(x)

∂w̄i

∂x
+

∂πi(w̄i, x)

∂x

]
+ βEs′

∂W (0, s′)

∂x
(36)

The same approach for s = N gives:

∂W (x,N)

∂x
=
∑
i

[
λN (x)

∂w̄i

∂x
+

∂πi(µ+ w̄i, x)

∂x

]
+ βEs′

∂W (0, s′)

∂x
(37)

The difference in marginal values of groundwater as a function of the state s is therefore

∂W (x,D)

∂x
−∂W (x,N)

∂x
=
∑
i

[
λD(x)

∂w̄i

∂x
+

∂πi(w̄i, x)

∂x

]
−
∑
i

[
λN (x)

∂w̄i

∂x
+

∂πi(µ+ w̄i, x)

∂x

]
(38)

It is safe to assume that ∂w̄i
∂x is equal under s = D or N if under both states the water
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availability constraint is binding16.

∂W (x,D)

∂x
− ∂W (x,N)

∂x
=
[
λD(x)− λN (x)

]∑
i

∂w̄i

∂x
+
∑
i

[
∂πi(w̄i, x)

∂x
− ∂πi(µ+ w̄i, x)

∂x

]
(39)

So the main difference between the case of water depletion and the case where the ground-

water availability restriction is binding is that now, an increase in the acquifer level not

only increases the value by allowing more groundwater extraction, but by also reducing the

marginal pumping costs. If the restriction is binding, then in both states the amount of

pumping would be the same, and so, the second term in the RHS of equation 39 is zero;

replacing the FOCs back gives:

∂W (x,D)

∂x
− ∂W (x,N)

∂x
=

[
∂πi(w̄, x)

∂w̄
− ∂πi(µ+ w̄, x)

∂w̄

]∑
i

∂w̄i

∂x
> 0 (40)

where the last inequality follows from the concavity of the production function.

Finally, lets consider a case where the amount of groundwater available makes the

restriction binding under Droughts but not in Normal times. The difference in marginal

values is:

∂W (x,D)

∂x
− ∂W (x,N)

∂x
=
∑
i

[
λD(x)

∂w̄i

∂x
+

∂πi(w̄i, x)

∂x

]
+ βEs′

∂W (0, s′)

∂x

−
∑
i

[
λN (x)

∂w̄i

∂x
+

∂πi(µ+ w̄i, x)

∂x

]
− βEs′

∂W (x′, s′)

∂x

(41)

But as the restriction is not binding under s = N , then λN (x) = 0. Using this and

16Because under both states, optimally, all the extra water would be distributed.
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reorganizing terms gives:

∂W (x,D)

∂x
− ∂W (x,N)

∂x
=
∑
i

[
λD(x)

∂w̄i

∂x
+

∂πi(w̄i(D), x)

∂x
− ∂πi(µ+ w̄i(N), x)

∂x

]
+ β

[
Es′

∂W (0, s′)

∂x
− Es′

∂W (x′, s′)

∂x

]
=λD(x)

∑
i

∂w̄i

∂x
+
∑
i

[
−∂ci(w̄i(D), x)

∂x
+

∂ci(w̄i(N), x)

∂x

]
+ β

[
Es′

∂W (0, s′)

∂x
− Es′

∂W (x′, s′)

∂x

]
(42)

where we used the fact that the groundwater stock only affects profits directly through the

cost function (and so ∂πi(w̄i,x)
∂x = −∂ci( ¯wi(s),x)

∂x ). While the first term is positive due to the

groundwater availability restriction binding under Drought, and the third term is positive

due to the concavity of the value function on x; the second term deserves further inspection.

In general, it is assumed that −∂2ci(w,x)
∂w∂x > 0 i.e. that the savings in pumping costs due to

an increase in groundwater levels are greater under higher levels of pumping. The fact that

the groundwater availability restriction is binding under Drought but not under the Normal

state means that the pumping under drought is higher, and therefore, the second term is

positive. These means that all three terms are positive, and so even if the groundwater

availability restriction is binding only under drought, the marginal value of groundwater is

greater under Drought than in the Normal state.

Marginal value of groundwater for values of x away from 0

When the acquifer is not close to depletion, it is less obvious why there would be any differ-

ence in the marginal value of groundwater. Equation 41 when the groundwater availability

restriction is not binding becomes

∂W (x,D)

∂x
− ∂W (x,N)

∂x
=
∑
i

[
∂πi(w̄i, x)

∂x

]
+ βEs′

∂W (x′, s′)

∂x

−
∑
i

[
∂πi(µ+ w̄i, x)

∂x

]
− βEs′

∂W (x′, s′)

∂x

=
∑
i

[
∂ci(w̄i(D), x)

∂x
− ∂ci(w̄i(N), x)

∂x

]
> 0

(43)

60



so the value of groundwater is larger during droughts because during droughts, more pump-

ing implies that the marginal savings from an increase in the acquifer level are higher.
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